Characterizing Manifolds Modeled on Certain Dense Subspaces of Non-Separable Hilbert Spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-separable Hilbert Manifolds of Continuous Mappings

Using Toruńczyk’s charaterization theorem, we show that the space CB(X,Y ) of bounded continuous mappings from X into Y is a topological manifold modelled on the Hilbert space of weight 20 , with respect to the topology of uniform convergence, under the following three assumptions: (1) X is a noncompact, separable and metrizable space, (2) Y is a complete metric space which is an ANRU (ANR in u...

متن کامل

On Certain Properties of Separable Spaces.

3Cf. Fubini, loc. cit., p. 54. 4 If the determinant gx, I for x, ,u = 1, ,(q < n) is zero, real quantities e are defined by the equations gxtx = 0. The vector with the components 0, {a = o (or = q + 1, ... . n) is a real null vector, which is impossible, if the fundamental form is definite. In a similar manner it can be shown that the determinant I gjt for a-,= 1, ..., p cannot be zero for a de...

متن کامل

Gleason’s Theorem for non-separable Hilbert spaces: Extended abstract

The probelm of generalizing Gleason’s theorem to the non separable case arose in correspondence with Paul Chernoff. I am very grateful to him for suggesting this charming problem to me. Let H be a Hilbert space. The coefficient field K of H can be either the reals or the complexes. We let P(H) denote the collection of all closed subspaces of H. A Gleason measure on H is a map μ : P(H) → [0, 1] ...

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

On separable Banach subspaces

We show that any infinite-dimensional Banach (or more generally, Fréchet) space contains linear subspaces of arbitrarily high Borel complexity which admit separable complete norms giving rise to the inherited Borel structure. © 2007 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tsukuba Journal of Mathematics

سال: 2003

ISSN: 0387-4982

DOI: 10.21099/tkbjm/1496164566